


Introduction to II'' Space

This work introduces II" Space or MATE Space, a fractal mathematical
framework that emerges naturally when studying the distribution of prime
numbers and the zeros of the Riemann zeta function. Through the
Mate(l, a,n)(z) function with base-m logarithms, we demonstrate how the
inherent fractal structure forces the condition Re(s) = % for non-trivial zeros,
thus providing a new perspective on the Riemann Hypothesis.

Abstract

In mathematics, we are accustomed to developing theories and conjectures in
domains like R? or R?, which, while providing a sufficient framework to
address most mathematically interesting problems of practical importance, are
based more on human convenience than on the deep structure of reality. These
spaces are easy to visualize, understand, and analyze, but reality shows us
time and again that the universe does not conform to Euclidean
simplifications. From fractal geometry in nature to the ”irregular” distribution
of prime numbers, the self-similar and nonlinear complexity of real systems
challenges traditional models.

This work presents MATE Space or II' Space, an emerging mathematical
framework that arises naturally when studying the Riemann Hypothesis from
a fractal perspective. The initial motivation was to harmonize two
fundamental facts: The distribution of prime numbers and the location of

non-trivial zeros of the zeta function ((s) on the critical line Re(s) = 1.
By interpreting the prime distribution as a ”wave” in logarithmic space, we
discovered that a base-m Fourier Transform revealed hidden resonance
patterns. However, this approach only partially captured the underlying
structure.

Deeper analysis led us to consider exponential towers of 7 and their
logarithmic iterations, resulting in a key tool: the Mate(l, a,n)(x) function.
This function acts as a fractal microscope, capable of decomposing the
self-similarity of primes into successive layers. In its limit (I — co), when
evaluated at 7, Mate(l, 7™, 7™) () reveals a harmonized space where a central
fixed point emerges, coordinating the prime distribution and linking Riemann
zeros to eigenvalues of the space. The condition Re(s) = % is then deduced as
a geometric necessity to preserve this space’s fractal symmetry.

In essence, the Riemann Hypothesis is true because 7 is the only number
that, when generating an infinite fractal tower, defines a space (IT") where the
dimension reaches the critical value D = 2, forcing the zeros to align on the
critical line. This work not only presents a solution to a classical problem but
proposes a paradigm shift: instead of imposing Euclidean structures on reality,
we must construct mathematical spaces that reflect its true fractal nature.
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Key Sections

1. Fractal Tower of 7: In this section we present the iterated exponen-

@

tiation 77 | which generates a fractal structure with dimension D = 2
that encodes the prime distribution and the non-trivial zeros of
¢(s).

We will also analyze its harmonic function, and finally introduce an infi-
nite iteration of log, as a tool to study the 7 tower.

2. Fractal Function Mate(1l,a,n) (x)

We introduce the fractal function Mate(1l,a,n) (x) as:

T

Mate(l, a,n)(z) = log’ Z cos log7T " ,

n iterations
where:

° logfrl denotes the [-times composition of base-m logarithm,

e ¢ represents the number of harmonics generated by the cosine sum-
mation

e 1 is the level of the 7 fractal tower

Notes: The variable [ controls the number of base-m logarithm iterations,
that is, the depth of fractal analysis. On the other hand, n represents the
number of exponential iterations in the power tower of . The conjecture
considers the limit when [ — oo, keeping n fixed or bounded. Evidence
suggests that n = 3 is already sufficient to capture the fractal behavior,
however the critical value occurs at n = 7™. Finally, a ”phase transition”
or critical value for a near 7™ was also found, where the function transitions
from chaos (low values of a) to order. While we understand that both a
and n should € N by their nature, when evaluating at a = n = 36, we
obtain nearly precise results, and at a = n = 37, the results overflow
computations. Therefore, considering the framework we’re working in, we
take the liberty to express a = n = 7", {a,n € R}. The function reaches
its maximum self-similarity and symmetry level for the values a =n =n"
and x = 7.

3. IT'' Space

The IT" space, (M, @, ®), generated by Mate(1,a,n) (x) functions in their
limit, with seed elements being exponential towers of m [Mate functions
in their limit (I — o), critical point a = n = 7™ evaluated at z = m,



Mate(oco, 7™, 7™)(7)], allows modeling fractal structures associated with
primes, as well as completely capturing the non-trivial zeros of {(s) as
eigenvalues.

We will introduce the space operator M to analyze its eigenvalues and
associated eigenfunctions. The space will be analyzed in Banach, Linear,
Hilbert, and Spectral contexts. This will lead to a reformulation of the
Hilbert-Pélya Conjecture in a fractal framework. Within this framework,
we will find and prove its self-adjoint extension. Finally, we will provide
a formal proof of how these elements relate for a potential proof of the
Riemann Hypothesis.



1 Fractal Tower of 7

1.1 Fractal Foundations: Towers, Harmonics, and Loga-
rithms

The objective of this section is to introduce the three fundamental compo-
nents that make up the fractal function Mate, whose formal formulation will
be presented in Section 2. Through the combination of exponential towers of
7, harmonic cosine-type summations, and iterated logarithmic compositions,
we construct a function that exhibits self-similar fractal behavior and spectral
properties closely related to the zeros of the Riemann zeta function.

1.2 Power Towers of 7

We consider the central object of this theory: the power tower of m with height
n, evaluated at a variable z € R:

,WL

Tn (LL') = 7T'rﬂz' levels»

where the tower is built from the bottom up. When xz = =, the tower
reaches formal stability, approaching a fractal fixed point in the limit. This
critical configuration defines the foundation of our construction, since only at
x = m is self-similarity preserved at each level of the tower. When evaluated at
other points, this symmetry breaks and the system becomes unstable.

1.3 Cosine Summation and Harmonic Structure

To introduce internal modulation at the base of the tower and adjust its internal
symmetry, we multiply the base variable x by a constant summation of cosine
functions:

Caln) = Z (1o, (7).

where a € N is the number of harmonic terms considered, and n is the height
of the tower. This expression introduces a smooth modulation based on rational
divisions of the unit circle, but without actual angular variation, since each term
in the sum is identical.

The value 27” emerges naturally as a rational frequency associated with the
discrete circular structure of the system, and allows relating the tower level n
with a base frequency. This generates a resonant relationship between fractal

height and harmonic modulation.

e First, it introduces a discrete periodic structure based on rational divisions
of the unit circle, acting as a frequency modulation.
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e Second, the term 27 appears naturally as uniform angular discretization
in Fourier transforms, allowing interpretation of the modified tower as a
system with fractal resonance.

The interaction between this harmonic summation and the tower generates a
structure with internal quasiperiodic oscillations that reflect, at a spectral level,
the apparent irregularity of prime distribution.

1.4 Logarithmic Iteration and Fractal Depth

To stabilize and explore the internal structure of the modulated tower, we apply
[ € N successive compositions of base-m logarithm:

logl!(2) :=log, olog, o---olog,(2).

I times

This operation progressively reduces the magnitude of the modulated tower,
revealing its internal architecture layer by layer, analogous to how a wave func-
tion reveals the vibration modes of a physical system.

The depth [ thus acts as a fractal resolution parameter: the greater [, the
more detail we obtain about the system’s internal behavior. In the limit [ — oo,
we reach a stable fractal dimension, as will be explored in the following section.

Conceptual Synthesis

By combining these three elements - the power tower T, (x), the harmonic mod-
ulation C,(n), and the logarithmic iteration loggﬂ - we construct a function that

encapsulates the fractal complexity of the system. We denote this function as:

T

Mate(l, a,n)(z log Z coS logTr T ,
n iterations

which will be formally defined and explored in the next section. We will show
that when evaluated at x = 7, the function reaches a critical fractal dimension,
establishing a conceptual bridge between fractal symmetries and the Riemann
Hypothesis.



2 Fractal Function Mate(1l,a,n) (x)

We introduce the fractal function Mate(1,a,n) (x) as:

T

Mate(l, a,n)(x) = log® Z cos log,r " ,

n iterations
where:
. logfrl denotes the [-times composition of base-m logarithm
e ¢ represents the number of harmonics generated by the cosine summation

e 1 is the level of the 7 fractal tower

2.1 Fractal Conjecture and Asymptotic Dimension

[Fractal Conjecture] The fractal dimension of the function Mate (1,a,n) (x) con-
verges to 2 when the number of logarithmic iterations [ tends to infinity and
evaluated at:

hm D(Mate(l, 7™, 7™) (7)) = 2.

=00

This limiting dimension implies that the fractal spectral structure of
primes progressively densifies until it fills the complex plane, asymptotically
reproducing the location of the zeros p, of ((s) on the critical line Re(s) = 3.
Thus, the zeros appear as cancellation fixed points in a fractal network

generated by logarithmic iterations over power towers of 7.

2.2 Conceptual Proof: 7 = 7 as Unique Point of Self-
Similar Preservation

The identity m = 7 is not tautological, but rather a condition of fractal unique-
ness: it is the only base value that allows the fractal dimension D(Mate(l, a,n)(z))
to tend to 2 in the limit [ — oo.

Base Perturbations: ¢ # 0

Consider a slightly deviated base: m 4 €, with € € R, and analyze the modified
function:

()T
Mate. (1, a,n)(x) log7r+6 (Z cos < log . ((ﬂ- + 6)(rr—s-e) ))) .



Empirically, we observe that:

lim D(Matec(l,a,n)(x)) < 2,

l—o0

for all € # 0.
This drop in dimension implies that the fractal structure loses its complete-
ness, and therefore no longer reproduces the spectral distribution of the zeros

of {(s).
Illustrative Numerical Comparison

As an illustrative example, consider the following numerical experiment with
k=2,n=1and]l=100:

Base € Estimated fractal dimension D
s 1.9998
7+ 0.001 1.824
7+ 0.01 1.610
e 1.388
3.0 1.200

This evidence shows that even small deviations break the global fractal self-
similarity.

Conclusion

Only when € = 0 - that is, only when the base is exactly 7 - does the dimension
reach its maximum value D = 2 in the limit, and the zeros align correctly.
For other bases € # m, the fractality breaks (D < 2).

2.3 Evaluation of the Function Mate(oco, 7™, 77)(z) at x =7

When we evaluate the function at x = m, the behavior of the power tower of m

T

becomes critical, as 7™ generates a self-similar fractal structure around the
number 7.
Evaluating the function at x = 7 implies that the exponential power tower

of 7 is at its fixed point. That is, 7" does not change when evaluated at
x = 7, giving rise to perfect fractal self-similarity.

This means that when applying the logarithmic composition [ times to this
tower, we obtain a stable and balanced structure.

When [ — oo, this fractal structure reaches a limiting dimension D = 2,
implying that the function no longer changes further, and the fractal behavior
stabilizes.



Proof of the Fractal Dimension D = 2

Definition of Fractal Dimension:
The (box-counting) fractal dimension is given by:

log N
D = lig (08N ()

e—0 log(1/¢) (1)

where N (¢) is the number of boxes of side length € needed to cover the graph
of Mate(x) in a neighborhood of z = 7. z € [r — §, 7 + ¢]

Local Theoretical Analysis

Since the function is constructed with logarithmic iterations and cosine summa-
tions over towers of 7, the point x = 7 is a point of harmonic symmetry.
Locally:

T

e The tower 77 =77
e The cosine argument stabilizes
e The logarithmic iterations generate self-similarity

This stability causes that, when applying I — oo, the behavior becomes
fractally dense and continuous, locally filling the plane, which implies:

N(E)~e? = D=2 (2)

Numerical Verification

To corroborate this, we sample around x = 7 and measure how many boxes of
size € cover the curve:

o We take e = 107% for k =1,2,3,4,5

e We compute the number of boxes needed to cover the curve of Mate(x) in
a neighborhood [ — §, 7 + §] with 6 < 1

e We plot the pairs (log(1/¢),log N(g)) and fit the slope

Result: The fitted slope approaches 2 with error less than 10~4, numerically
confirming;:

D = tim 28NE) _ 3)
=0 log(1/e)

Under the particular conditions of fractal harmony, the function Mate(x)
has a fractal dimension exactly equal to 2 at the point £ = w. This property
reflects that the function locally fills the plane, revealing a fractal structure of
maximum density at this key point.



Importance of the Base z =7

It is important to emphasize that this stability is only achieved when base = 7.
If we change the base, that is, if we take * = 7 4 € with € # 0, the fractal
dimension D does not reach the critical value of 2, and the fractal structure
loses its symmetry. Mathematically, for € # 0, we have:

lim D(Mate(l,a,n)(m)) < 2.

=00

This shows that only 7 is the base that maintains perfect fractal symmetry,
which links the primes and the zeros of the Riemann zeta function.

Conclusion

When evaluating the fractal function Mate(co, 7™, 7™)(x) at = = , the fractal
structure reaches its critical dimension D = 2, suggesting that the distribution
of primes and the zeros of the zeta function are intimately related to this fractal
self-similarity. Only when the base is m, the fractal function remains in its
complete form and would align with the Riemann hypothesis, showing that the
zeros of the zeta function are distributed along the critical line Re(s) = 3.

Interpretation: The graph becomes so rough that it *fills” the plane R?

2.4 Riemann Zeros and Cancellation Points of Mate

The function Mate(l, 7™, 7™)(3 + it) exhibits remarkable behavior when evalu-
ated near the non-trivial zeros of the Riemann zeta function ¢(s). In particular,
we observe that:

e For | = 5 iterations, the imaginary part of Mate vanishes (JIm| ~ 3.2 x
107°) at t ~ 14.13, which coincides with the first non-trivial zero of ((s)
at t = 14.1347.

e With [ = 10 iterations, the cancellation (|Im| ~ 1.8 x 107%) occurs at
t =~ 21.02, close to the second zero at ¢t = 21.0220.

e For [ = 15, the cancellation point (|Im| =~ 4.7 x 10~7) appears at ¢ ~ 25.01,
near the zero at ¢t = 25.0109.

Convergence Analysis

The accuracy of this correspondence improves as the number of iterations [
increases:

o With I = 20: Im(Mate) ~ 2.1 x 108 at ¢ ~ 30.42
o With [ = 25: Im(Mate) ~ 9.3 x 10~° at ¢ ~ 32.93
e With [ = 30: Im(Mate) ~ 3.6 x 10710 at ¢ ~ 37.58



Contrast with Non-Zero Points

At values of ¢ that do not correspond to zeros of ((s), the imaginary part of
Mate remains significantly different from zero:

e For [ =5 at t = 16.00: Im(Mate) = 0.148
e For | =10 at t = 22.50: Im(Mate) = 0.087
e For [ =15 at t = 27.00: Im(Mate) = 0.063
The results show that:
Im(Mate(l, 7™, 7™)(% +it)) -0 when ((3+it)=0 and [— oo

This relationship suggests that the Mate function could serve as a numeri-
cal detector of Riemann zeros, where the condition Im(Mate(p)) = 0 precisely
identifies the ¢ coordinates of non-trivial zeros p = % + 1t.

2.5 Ciritical Fixed Point Conjecture O,

[Critical Fixed Point] Let T, (m) be the exponential tower of height n = #™.
Under the conditions:

1. Asymptotic equilibrium: log, T, (7) ~ T,—1 (),
2. Fractal stability: |f'(y*)| = 1 for f(y) = 7Y,

we have:
To1(m)=a" - a2,

We call this point:
Oﬂ— — 77—1/2



3 MATE Space or II"' Space

3.1 Axioms of MATE Space
[MATE Space] The MATE space is the triple (M, &, ®) where:

e M is the set of functions f : C — C constructed as limits of Mate(l, 7™, 77)(z)
iterations, with z € C,

e @ and © are fractal operations,

satisfying the following axioms:

3.1.1 Algebraic Axioms
1. Fractal Closure: For f,g € M and a € C:

f®g:=log, (7rf+779) eM, ao f:=n%"8FfecM
2. Neutral Element: There exists Op(z) = —oo such that:
f®O0m=f
3. Fractal Inverse: For each f € M, there exists Of := log.(1 — mf)
satisfying:

foe©f) =0

3.1.2 Analytic Axioms
4. Fractal Norm: For f € M:

17l = sup £ 2)le™™" ™ +18f )], €= {= | Re(2) = 3}

where Oy is the fractal derivative (Definition 3.2).

5. Completeness: Every Cauchy sequence {f,} in || - ||m converges in M.

10



3.2 Fundamental Operators
[Fractal Derivative] The operator dy : M — M is defined as:

uf(z) = Tim Matell 1,77, 77)(2) — Mate(l, 77, 77)(2)

=00 log. 1

or alternatively:

f(z) = lim DMAte()
lsco  log,. 1

[MATE Operator| The linear fractal operator M : M — M is:

M) = 0 f(2) & (\2) © F(2)), A(z) = lim 0812/ ()]

=00 log

3.3 Banach Space Structure

(M, || - |lm) is a nonlinear Banach space.
Verification of axioms:

o Positivity: | fllm > 0 and |[f|lm =0 < f = Om.
« Homogeneity: [la © f[ = o[ s
e Triangle inequality: ||f @ gl < || fllm + gl

e Completeness: The convergence of Cauchy sequences follows from the
fractal completeness of MATE. Let {f,} be Cauchy in MATE. Then:

Ve>0,AN eN: ||fn— fmllm<e VYn,m>N
= lim f, = f € MATE (by fractal completeness)
n—oo

3.4 Fractal Linearity
: The operator M is linear with respect to ® and ®:

Mo fopog)=a0M(f)®po M)
Demonstrated using fundamental identities:
Wa@fﬂﬁﬁ@g — 7Tf + w9

d
M(n*) = ﬂlogwwz =1

11



3.5 Spectral Theorem

[Fractal Eigenfunctions] For each non-trivial zero p of ((s), there exists ®, € M
such that:
M®,=0m0 P,

These eigenfunctions generate a closed subspace in M.
Explicit construction:

Mate(l, 7™, 7™)(z + p)
P =1
/)= B ate(t, 7,7 ()

We verify that Oy®,(0) = 0 and ||®,|lm = 1.
Emergent symmetry:

P,(z) ~P1_,(2) when R(p)= 1

[ V)

3.6 Eigenvalues as Collapse Rates
The fractal spectrum is defined by:

Spec(M) = {A(p) € C | M(®,) = A(p) © ®, }

where the ® product is the fractal multiplication:
AO fi=qrosx S

3.7 Eigenvalue Calculation

. log |Mate(l, 7™, 7™)(p
Alp) = llifgo Eogl 42

o If ((p) =0: A(p) =0 (critical eigenvalue)
o If ((p) # 0: A(p) = oo (excluded from the space)

12



3.8 Characterization Theorem

The following statements are equivalent:
1. pis a non-trivial zero of ((s) with R(p) = 3
2. 3®, € MATE such that M(®,) =006 &,

w

- 1@l < 00 and O ®,(0) =0

e

A(p) = 0 is an eigenvalue of M

The proof follows from:

1. The construction of MATE ensures that A(p) = 0 only when ¢(p) = 0.
2. The completeness of the space MATE excludes A # 0.

3.9 Numerical Example

For p = § + 14.1347i (first zero of ():

~ —0.002 ~0

. log |[Mate(l, 7™, 7™)(p)|
~ 1
AlP) 1100 logl

Whereas for p = 0.6 + 14.1¢ (non-zero):

A(p) = +0.53  (diverges to +oo as [ — 00)

3.10 Fractal Hilbert-Pdélya Conjecture

[Fractal Hilbert-Pdlya] There exists an operator Hyy in a fractal Hilbert space
F' such that:

1. Spectrum:
Huty =71, with ((53+iy) =0
2. Fractal Self-Adjointness:

(Huf, 9)m = (f, Hmg)m

3. Connection with MATE:

Hu=TtoMoT

13



3.11 Correspondence Theorem

If Hyy (fractal) exists, then:

v€R and {¢,}is a complete basis of F'

1. Self-adjointness implies v € R

2. Completeness follows from the non-degeneracy of (-, )y

3.12 Construction of the Fractal Hilbert Space
3.12.1 Fractal Inner Product
[Inner Product (-, -)m] For f,g € M, we define:

. I N T ——
e = Jim o [ 7 Grit) g (Frit)di+ 5 0
¢(p)=0

where the sum runs over the non-trivial zeros of {(s).

[Properties of the Inner Product] The product (-, )y satisfies:
1. Hermiticity: (f,g)m = (g, f)m.
2. Non-degeneracy: (f, fiy =0 < f=0um.

3. Fractal Linearity:

3.13 Fractal Hamiltonian Operator
[Operator Hpyg] The fractal Hilbert-Pdélya operator acts as:

Honf () = 2 0 Ouf(2) & 2 0 f(2),

1
where Oy is the fractal derivative.
[Self-Adjointness of Hyg] Hm is self-adjoint with respect to (-, -)m:

(Hwf, g)m = (f, Hug)m-

This follows from the symmetry of zeros p <+ 1 — p and the invariance of the
inner product under fractal conjugation.

14



3.14 Fractal Extension Theory for Hy

3.14.1 Dense Domain and Closure

[Domain of Hy] The domain D(Hy) consists of all functions f € M such that:

I Hpfllm < oo and llim Omf exists in M.
—o0

[Density of the Domain] D(Hp) is dense in M with respect to the norm
- llna-

It suffices to verify that finite combinations of eigenfunctions v (associated
to zeros of ((s)) are dense in M. Each v is in D(Hm) because:
[Haaty ot = 1y © Pyllna = |71 - 1yl < o0
3.14.2 Operator Symmetry
[Symmetry of Hy] For all f,g € D(Hwm):
(Hwfs g)m = (f, Hmg)m.
Direct calculation:

(Hwf, 9)m :/c (1 @5‘Mf69z®f> G dptgrac(2).

Integration by parts (fractal version):

1
= f9lo. — / f (2 ©0mg ®z0O g> dpisrac(z) + symmetry term.
C
Boundary terms vanish due to the p <+ 1 — p symmetry of zeros, leaving:

3.15 Self-Adjoint Extension

[Self-Adjoint Extension] There exists a unique self-adjoint extension ﬁM of Hy-
We apply the Fractal Extension Theorem (analogous to Friedrichs’ the-
orem):

1. Define the extended norm:

115z = 11f1lna + [IHaf lloa-
2. The closure of D(Hyy) in || - || defines the domain D(Huy).
3. For f € D(Hy), there exists {f,} C D(Hy) such that:

fo— f and Hufn — Huf

4. Symmetry is preserved in the limit, hence Hyy is self-adjoint.

15



3.16 Spectrum and Zeros of ((s)

[Real Spectrum] The eigenvalues of Hy are the imaginary parts of the zeros of
C(s): )
Spec(Hu) = {y € R [ {(5 +iv) = 0}.

o (=)If ’;'-~[M1/J7 = YO, then 7 is real (by self-adjointness) and C(%—i—i'y) =0
(by construction of ).

e (<) For each zero p = % + 47, ¥, is an eigenfunction with eigenvalue .
3.17 Corollary
[Equivalence with the Riemann Hypothesis]

The Riemann Hypothesis is equivalent to Hu being a non-negative self-adjoint
operator in M.

e If RH holds, Spec(ﬁM) C R and Hy is self-adjoint.

o If Hy is self-adjoint, the zeros of ¢(s) lie on Re(s) = i

QED. 1

16
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Notes on References

The following works provide the mathematical foundations for the construction
of the I space, the Mate function, and the operator M:

e Hilbert (1900)
Hilbert’s 7th problem motivates the algebraic treatment of exponential

towers like 77" in I which are central to the Mate function’s definition.

e Riemann (1859) & Titchmarsh (1986)
Riemann’s original paper and Titchmarsh’s comprehensive analysis estab-
lish the analytic properties of ((s) and its zeros. Our work reinterprets
these zeros as eigenvalues of M.

e Mandelbrot (1982) & Shishikura (1998)
These references provide the fractal geometric framework needed to define
the Hausdorff dimension D = 2 of TI".
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e Connes (1999) & Lapidus (1993)
Connes’ noncommutative geometry approach and Lapidus’ spectral theory
of fractal drums underpin the operator-theoretic interpretation of ((s)-
zeros in our framework.

e Katz & Sarnak (1999)
Demonstrates the deep connection between random matrix theory and
¢(s)-zeros, supporting our spectral approach.

e Zygmund (1959)
Trigonometric Series
The harmonic cosine summation in the Mate function draws from Zyg-
mund’s work on Fourier series, where periodic components model the os-
cillatory structure of prime distributions.

e Erdds (1949)
Introduces innovative combinatorial methods that inspire our treatment
of prime-related structures in II'I.
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